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Mixed convection around a horizontal circular cylinder immersed
in a Darcy flow
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Abstract. The forced and free mixed convection problem around a horizontal circular cylinder in a fluid-saturated
porous medium is investigated at small Peclet number with Gr/Re = 0(1). The Darcy flow model is used for the
velocity field. The method of matched asymptotic expansions is used to obtain asymptotic solutions for small Peclet
number. It is shown that, up to the present order of approximation, natural convection has no effects on the
temperature field, and the effects of the parameter Gr/Re on the velocity field are examined in detail.

1. Introduction

The study of convection flows around heated bodies embedded in saturated porous media
has been made by many authors because of their importance in geophysical and engineering
applications. The present paper concerns with the forced and free mixed convection flow
around a horizontal circular cylinder immersed in a porous medium through which a liquid is
flowing according to Darcy's law. Most of the previous works concerned with the mixed
convection around a body considered the case of wedge configuration including a flat plate as
a special case. The work by Cheng [1] is the only work which is related to the mixed
convection around a horizontal circular cylinder, as far as the present author knows. He used
a boundary layer formulation and showed that with a generalized similarity transformation,
the resulting ordinary differential equation and boundary conditions reduce to those of a
vertical isothermal surface, for which similarity solutions have already been obtained [2]. In
the present paper, we consider the mixed convection around a horizontal circular cylinder in
a porous medium at small Peclet number with Gr/Re = 0(1), where Gr and Re are the
Grashoff and Reynolds numbers, respectively. As Bejan [3] stated, the study of the low
Peclet number case is more appropriate in view of the limitations associated with using the
Darcy flow model. The solutions are obtained using the method of matched asymptotic
expansions, in which the velocity and temperature are, respectively, expressed as separate,
locally valid, expansions in terms of Pe (Peclet number) for two regions, namely, the inner
and outer regions [4].

2. Governing equations

Consider a Darcy flow around a heated (or cooled) horizontal circular cylinder of radius a.
The superficial velocity (volumetric flow per unit cross-section area) of the far upstream is
assumed to be uniform (= U.) and in the opposite direction of gravity. The non-dimensional
equations governing the mixed convection flow around a cylinder can be written under the
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Boussinesq approximation as
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r ar r ao
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= - t cos 0 , (2a)
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= - a+ Gr t sin 0 (2b)
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u + - at = Pe-' V2t, (3)
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where

V2 = 1 a ( ) a1 2

In the above equations, (r(= r'/a), 0) is cylindrical coordinates with r = 0 at the center of the
cylinder and 0 =0 in the direction of gravity, u(=u'/U.) and v(=v'/U-) the superficial
velocities in r- and -direction, respectively, p(=K(p'-p-gz)/aAtU) the pressure,
t(=(t' - T)/(T - T,)) the temperature,

Kgoa(T. - T.)
Gr = (4a)

Re= a and Pe= p (4b)

where prime denotes the dimensional quantities, K is the medium permeability, p the
density of the fluid at infinity, cp the specific heat of the fluid, g the gravity constant, A the
viscosity of the fluid, /3 the volumetric coefficient of expansion, T the surface temperature
of the cylinder, Ae the effective thermal conductivity of the saturated porous medium and
v = AI/p.

Introducing the stream function i defined by

U= a = aOr (5)r O' Or '

the equation of continuity is automatically satisfied and eq. (2) may be written as

Gr/1 Ot Ot )V2 Gr a cos 0 + a sin0 . (6)
Rer Or

The boundary conditions are

¢=O, t=1 at r=1, (7a)

Hi--*rsin, t--->0 as r-c. (7b)
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3. Asymptotic solutions for small Peclet number

We shall now proceed to obtain asymptotic solutions of (3) and (6) for small Peclet numbers.
We assume that t and cq may be expanded as

t = to + At I + A2t 2 + .. + O(Pe), (8)

q = 0 + A rCq + A2,p2 + - + O(Pe), (9)

respectively, where

A = 1/(ln(4/Pe)- C), (10)

C = 0.5772157 ... being Euler's constant. These assumptions are similar to those for other
two-dimensional flow problems at low Peclet numbers. Substitution of (8) and (9) into (3)
and (6) yields

V2tn =0 (11)

and

v2 r Gr ( atCos 0 at n )sin (12)
Re r s+i0 .

Equation (11) is the heat conduction equation and its solution satisfying the boundary
condition on the surface is

to = ao In r +1 , (13a)

t = an In r (for n _ 1), (13b)

where an are integral constants. Substituting (13) into (12), we have

Gr sin 0 (14)
V2 , =an R r (14)Re r

The solution of this equation satisfying the boundary condition on the surface is

n= r In r sin 0 + E bnk(rk - rk) sin kO, (15)
2 Re k=l

where bnk are integral constants. It is to be noted here that, in view of the solution (13), the
expansion for t, eq. (8), could not be made to vanish at infinity, suggesting that the
expansion (8) and therefore expansion (9) are valid only in the inner region where r = 0(1).
This failure of the expansion (8) for large r is closely similar to what is generally observed in
the problems of low Reynolds (or Peclet) number flow around a body, and can be explained
by the fact that, in the outer region far from the body where r = O(Pe-'), the convection
terms in the energy equation become comparable order of magnitude with the conduction
terms.
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In the outer region, we introduce the following variables

p = Pe r, (16a)

MT(p, 0) = Pe ~q(r, 0), T(p, 0) = t(r, )/6(Pe), (16b)

where (Pe) is the still unknown order of the temperature in the outer region. In terms of
these outer variables, equations for TI and T may be written as

V 2p = (Pe) Gr d cos 0 + sin ), (17)

8T V8T
U - + V- T=V2T, (18)

ap p 00

where

U=-p-O aI/8 , V= d/lap, (19)

and V. is the same operator as V2, but with r replaced by p. The solutions for (17) and (18)
are assumed to be of the following forms,

= '0 +
2l + A2 + - + O(Pe), (20)

T= To + AT + A2T2 + .. + O(Pe). (21)

These outer expansions are required to satisfy the boundary conditions at infinity and,
instead of satisfying the boundary conditions on the surface, to satisfy the following matching
conditions

lim T(p, 0) = Pe lim (r, ) ), (22a)

lim T(p, 0) = {1 /(Pe)} lim t(r, 0). (22b)
p-0 r

0

From these matching conditions together with the requirement that both T and P should be
of order unity, we can easily show that

6(Pe) = A, (23a)

ao =0, a =-1, b, k=0 for k 2, (23b)

and that, and T should behave, as p-> 0 , as

P-(b 0 -2 Re) psin0+ ..

+ 1Gr [C-ln4 psin0+ }+O(A2) (24)
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T -- In p + (a2 + In 4-C) + ---

+ A{a2 n p + a3 + a2(C - In 4) + .. } + O(2). (25)

The fact that bnk =0 for k _2 suggests that the inner streamlines are symmetrical with
respect to the midplane 0 = r/2 and 3r/2. The asymmetry of the streamlines will appear
only when the terms of O(Pe) are included in the analysis.

Inserting (19) and (20) into (17) and (18), we can obtain the equations for PO, tP and To
as

V2 o = 0, (26)

V2 = Gr 1 aT cos 0 + T sin 0) (27)

1 a0 aT o 1 O a To
+- =V~T,. (28)p o ap p ap a P 

The solution of (26) satisfying the boundary condition at infinity is apparently a uniform
stream

P0 = p sin 0, (29)

and the equation for To becomes

-cos0 aTo + sin- - = V2 To (30)
ap p 00

The general solution of (30) satisfying the boundary condition at infinity is

To= AoK(2)exp(pA/2), .=-cos0, (31)

where AO is an integral constant and Ko(z) the modified Bessel function of the second kind.
The constant AO as well as the constant a2 can be determined from the matching condition
(25) as

A 0 =1, a2 =0. (32)

Thus, To, to, t and t2 have been determined completely as

To = Ko(p/2) exp(pAI /2), (33)

t o =1 , t1 = -In r, t2 =0. (34)

It is seen that, up to the present order of approximation, the effect of natural convection
does not appear in the temperature field, and that the above obtained solutions agree with
those for the forced convection problem.

Substitution of (29) and (33) into (27) gives
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V2 l= - Gr K1(p/2) exp(pt/2) sin 0 (35)VoP - 2 Re

The solution of (35) satisfying the boundary condition at infinity is

4, Co,, p - n s in n O - r (-1)n nn 2K, In 5
n=l Re n=1 2n { (2) n(2)

+ ( K,2 ) [ I-(2 ) + (2) sinn ', (36)

where Con are integral constants and In(z) the modified Bessel function of the first kind. The
matching condition (24) determines the integral constants as

Cn = for all n, (37a)

1 Gr 1 Gr
bol =1 + 2 Re ' b i - 4 Re (37b)

Thus, 0f, ¢, and A1 have been determined completely as

¢o(1+ 1 Gr - 1) sin 0 (38)00 l+ (38)

'=Ree (2 rtnr+ 4 (r- )}sin0,Gr f 1 rln ! (39)

ReGr n( 2n [2K ( 2 I() + K(){ I_ ) + sIn+l (P)] sin nO . (40)
Re = 2n1 2 \2 2/L 2 2

When Gr/Re = 0, these solutions become identical with the well-known potential flow
solution. It is seen from (38) that, for Gr/Re < -2, the sign of the values of 610 become
negative, that is, the direction of the first-order inner flow is opposite to that of the main
flow.

From the solutions obtained so far, the expressions for the radial and tangential velocity
components may be calculated as

U=-(1+ 2G 1- os 0 - Gr In r os + , (41a)
M( R 2 4( r2

2Re r 2 Re 2+ 4\1 r2sin+ -(41)
U = (1 + 2G )(1 + 21 sin +., (4lb)

in the inner region, and as

U = -cos + K e x(') (
Re 2 (2)eP 2 ) 2)

+ K () (1) f ) 2n - In (2 ) }cos no] + (42a)

2Gr () ) (42b)
v=sinO+A K0ue r expegi)sin+ (42b)

in the outer region.



Mixed convection

4. Discussions

We shall first show some results for the velocity distribution calculated from (41) and (42).
The distribution of u at 0 =0 and v at 0 = 7r/2 is shown for Pe = 0.1 with Gr/Re as a
parameter in Fig. 1 and that for Gr/Re = 3, -1 and -3 with Pe as a parameter in Figs 2(a)
and 2(b). The velocity distribution shown in these figures is calculated from composite
solutions, which can be obtained by adding the inner and outer solutions and then
subtracting the common part. It is seen from Fig. l(b) that the tangential velocity decreases
with decrease in Gr/Re and becomes negative near the surface when the value of Gr/Re
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Fig. 1. Velocity distribution for Pe = 0.1, (a) normal velocity at 0 = 0, (b) tangential velocity at 0 = 7r/2.
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Fig. 2. Velocity distribution for Gr/Re = 3, -1 and
0 = 7r2.
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Fig. 3. Inner velocity distribution for Pe = 0.1, (a) u/cos 0, (b) v/sin 0.

becomes smaller than some negative value. This suggests that, for Gr/Re smaller than this
critical value, vortices are formed at both sides of the cylinder. We should note at this point
that the normal velocity shown in these figures does not satisfy the boundary condition on
the surface, namely, u = 0 at r = 1. This is because the common part of the first-order outer
solution which is of (A 2) in magnitude in the inner region has not yet been subtracted from
the composite expansion. Therefore, in order to see the velocity distribution near the
surface, it is better to use the inner solution than to use the composite solution. Figure 3
show the distribution of u/cos 0 and v/sin 0 for Pe = 0.1 calculated from the inner solution
(41). It is seen that the critical value of Gr/Re stated above is exactly -2. We can easily see
from (41) that, up to the second order of approximation, this critical value is independent of
Pe. This fact can be seen from Figs 4(a) and 4(b) also, in which inner velocity distribution for
Gr/Re = 3, -1, -2 and -3 is shown with Pe as a parameter. Furthermore, we can see in
Fig. 4 that the tangential velocity on the surface does not depend on the value of Pe up to
the second order of approximation.

Next, we shall show some examples of the streamline pattern. Figs 5(a)-5(e) show the
streamline patterns at Pe = 0.1 and for various values of Gr/Re calculated from the inner
solution. It is seen that, for Gr/Re < -2, there exist two vortices at both sides of the cylinder
which are surrounded by main flow, and that the streamline separating the vortices and the
main flow is a circle, the radius of which becomes larger as the value of Gr/Rel increases.
Figure 6 shows streamline patterns at Gr/Re = -2.3 and Pe = 0.05. From this figure together
with Fig. 5(d), we can see that the radius of the streamline separating the vortices and the
main flow is larger for smaller values of Pe. In order to see the streamline patterns far from
the cylinder, the streamlines calculated using the outer solution are shown at Pe = 0.1 and
for Gr/Re = 3 and -2 in Fig. 7. It is seen that, for parallel flow (Gr/Re >0), the fluid
particles coming from the lower half space are drawn towards the cylinder, while that, for
contra flow (Gr/Re <0), the particles are displaced outwards. These facts are because the
buoyancy force accelerates the fluid near the surface for parallel flow and decelerates it for
contra flow. Moreover, we can see in these figures that, for parallel flow, the velocity of the
upper stream is larger than that of the downstream, and that the converse holds for contra
flow.
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Fig. 4. Inner velocity distribution for Gr/Re = 3, -1, -2 and -3, (a) u/cos 0, (b) v/sin 0.

Mixed convection 229

<D

cD

Co
C-)

cD
Co

Co

C

C)



230 T. Sano

Fig. 5(a).

Fig. 5(b).

Fig. 5(c).
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Fig. 5(e).

Fig. 5. Inner streamline pattern for Pe= 0.1, (a) Gr/Re =3, (b) Gr/Re =O, (c) Gr/Re= -2, (d) Gr/Re= -2.3,
(e) Gr/Re = -3.

Fig. 6. Inner streamline pattern for Pe = 0.05 and Gr/Re = -2.3.

Fig. 5(d).
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(a)

(b)

Fig. 7. Outer streamline pattern for Pe = 0.1, (a) Gr/Re = 3, (b) Gr/Re = -1.
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